Factors affecting L2 perception/production

- **Age of L2 learning** (Long, 1990; Flage et al., 1999, 2005)
- **L1 influence** (Best, 1995; Flage, 1995)
- **Quality and quantity of input** (Flage, 2000; Mora, 2008)
- **Amount of L1/L2 use** (MacKay et al., 2001; Piske et al., 2001)

Cannot explain remaining inter-subject variability in L2 phonological development

- **Cognitive ability and L2 speech perception**

Individual differences in cognitive ability:
- musical aptitude (Gottfried, 2007; Slevk & Miyake, 2006)
- phonetic talent (Flage et al., 2007)
- musical ability (Gottfried, 2007; Isaacs & Trofimovich, 2011)
- working memory (Karmos & Safar, 2008)
- phonological short-term memory (Cerviño & Povedano, 2011; MacKay et al., 2007)

Little is known: relationship between these factors and L2 perception/production

Why to explore?!

- Exist but remain underresearched
- Examine relationship between cognitive abilities and L2 phonological acquisition
- May help to identify characteristics of learners
 - who struggle with L2 phonological acquisition
 - who successfully master L2 pronunciation

Problems with L2 perception

1. **Cross-linguistic phonetic similarity affects:**
 - L2 perception through L1 - inaccurate formation of L2 categories
 - **Why?**
 - L1 phonetic prototypes - “magnets”
 - Perceptual assimilation to the most similar L1 phoneme

2. **Factors independent from L1 transfer:**
 - Reliance on wrong cue
 - **Why?**
 - More salient (E.g. Duration)
 - **What to do?**
 - Discern phonetic differences between L1 and L2
 - Rely on right phonetic cue

The Present Study: Focus

- **Focus**
 - Inter-subject variability in L2 target-like perception
 - (weighting of phonetic cues in speech perception)
Cognitive ability and L2 speech perception

• Focus
• Inter-subject variability in L2 target-like perception (weighting of phonetic cues in speech perception)
• Spanish/Catalan EFL learners difficulty in target-like perception of English /ʊ/ and /u/ contrast
 • Single Category assimilation: English /ʊ/ - /u/ to the Native /u/ category
 • Overreliance on duration when perceiving /ʊ/ and /u/ contrast

• Individual differences in Attention Control (AC)

Attention Control (AC)

- L1/L2 processing – complex cognitive skill (rapid & flexible)
- L1: efficient and flexible AC (automatic processing)
- L2: controlled processing (requires greater attentional resources)

EXAMPLE:
The book is under the magazine

Mental representations: 1) book and magazine
2) spatial relationship (grammaticized part)

The Present Study: Focus

- Focus
- Individual differences in Attention Control (AC)
 • Discern differences underlying the contrast
 • Attend to the signaling cue
The Present Study: Aim and RQ

AIM:
- To investigate the extent to which individual differences in AC are related to L2 vowel perception.

RQ:
- Are L2 learners with more efficient AC better able to rely on spectral information than lower ability learners in the perception of the English tense-lax /iː/-/ɪ/ contrast?

Hypothesis
Individuals with higher AC capacity might be better able to rely on spectral information in the categorization of English /iː/ and /ɪ/ because they would be more successful at bringing segmental duration to the background.

The Present Study: Method

- Participants:
 - 58 Spanish/Catalan EFL learners (mean age: 21)
 - 13 NS – baseline data (Vowel Discrimination Task)
 - No speech disorders or hearing problems
 - Self-estimated proficiency level: from intermediate to advanced

- Tasks and Procedure:
 - Linguistic Background Questionnaire
 - AC (attention-shift task)
 - Cue-weighting in L2 vowel perception (Vowel Discrimination Task)

How can AC be operationalized?

- alternating runs procedure
- requires switching between tasks
- dimensions under focus appear predictably

(Rogers & Monsell 1995)
Task-switching paradigm: predictable alternating runs

Number	Letter
P1 |

odd: Left key, vowel
even: Right key, consonant

Number	Letter
S5 |

odd: Left key, vowel
even: Right key, consonant

Number	Letter
6J |

odd: Left key, vowel
even: Right key, consonant

Number	Letter
8U |

odd: Left key, vowel
even: Right key, consonant

Number	Letter
9O |

odd: Left key, vowel
even: Right key, consonant

Number	Letter
2A |

odd: Left key, vowel
even: Right key, consonant

Rogers & Monsell (1995)
Task-switching paradigm: measures

AC Measures:
- Shift cost = S RTs - R RTs
- Error rate = overall = S trials = R trials

Switch trial (S)
Repeat trial (R)

Number

Letter

How can AC be operationalized in language?

A person’s ability to shift focus of attention from one language-based attention-directing function to another

(Segalowitz & Frenkiel-Fishman 2005)

Language-based version of the alternating runs paradigm
Example:

Dimension 1: temporal location of events
(a) present: now, shortly, etc.
(b) not present: tomorrow, never, etc.

Mary is coming now / later

Dimension 2: causal connection of events
(a) causal: because, due to, etc.
(b) not causal: however, despite, etc.

John did well in his exams because he studied / despite not studying

Task-switching paradigm: predictable alternating runs

Time

Causality

Segalowitz & Frenkiel-Fishman (2005)

Segmented LEFT KEY Present
Not Causal LEFT KEY Not Present

Task-switching paradigm: predictable alternating runs

Time

Causality

Segalowitz & Frenkiel-Fishman (2005)

Segmented LEFT KEY Present
Not Causal LEFT KEY Not Present

Task-switching paradigm: predictable alternating runs

Time

Causality

Segalowitz & Frenkiel-Fishman (2005)

Segmented LEFT KEY Present
Not Causal LEFT KEY Not Present

Task-switching paradigm: predictable alternating runs

Time

Causality

Segalowitz & Frenkiel-Fishman (2005)

Segmented LEFT KEY Present
Not Causal LEFT KEY Not Present
Segalowitz & Frenkiel-Fishman (2005) Causal Present but Causality

Task-switching paradigm: predictable alternating runs

Time but Causality

but Causality

but Causality

but Causality

later Causality

later Causality

later Causality

later Causality

Causality

Causality

Causality

Causality

never Causality

never Causality

never Causality

never Causality

Causality

Causality

Causality

Causality

despite Causality

despite Causality

despite Causality

despite Causality

Causality

Causality

Causality

Causality

however Causality

however Causality

however Causality

however Causality

Causal
Cognitive ability and L2 speech perception

How can AC be operationalized in speech?

The Present Study

A person’s ability to shift focus of attention from one speech-based attention-directing function to another

No speech-based version of the alternating runs paradigm exists created a new one (Safronova 2011)

Stimuli: 7 Catalan vowels /i e ɛ a œ o u/ short (200ms) / long (500ms)

- Dimension 1: segmental duration short / long (500ms)
- Dimension 2: voice quality male / female

3 Practice blocks = 48 trials; Test block = 224 trials

Auditory feedback ‘beep’ Picture of a ‘loudspeaker’

Attention-shift task

Duration

Short

Long

Quality

Male

Female

Attention-shift task

Duration

Quality

Male

Female

Attention-shift task

Duration

Quality

Male

Female

Attention-shift task

Duration

Quality

Male

Female
Attention-shift task

Measures:
- Shift Cost = Shift RT (longer) – Repeat RT (shorter)
- Error rates: Overall, Repeat, Shift

The Present Study: Materials

- **Vowel Discrimination Task**
 FC AXB Categorial Discrimination Test (Moya-Galé & Mora, 2011)
 - /i/ and /u/ in 6 CVC minimal pairs: /b_d/, /d_d/, /s_d/, /b_t/, /p_k/, /p_t/
 - 6 native English speakers (3 males, 3 females)
 - 72 natural and 72 duration manipulated stimuli
 - Different tokens within trial
 - Different speakers within trial

Results: AC – bid

- Male
 - M = 58.35, t(57) = 1.39, p > 0.001
 - Vowel Discrimination Task
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Attention Control

- Descriptives N = 58
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Results: Correlations

<table>
<thead>
<tr>
<th></th>
<th>AC (ERR)</th>
<th>AC (SC)</th>
<th>DIS (NAT)</th>
<th>DIS (MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (ERR)</td>
<td>0.368**</td>
<td>-0.556**</td>
<td>-0.535**</td>
<td></td>
</tr>
<tr>
<td>AC (SC)</td>
<td></td>
<td>0.044</td>
<td>-0.167</td>
<td></td>
</tr>
<tr>
<td>DIS (NAT)</td>
<td></td>
<td></td>
<td>0.771**</td>
<td></td>
</tr>
</tbody>
</table>

Results: AC – bid

- Male
 - M = 58.35, t(57) = 1.39, p > 0.001
 - Vowel Discrimination Task
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Attention Control

- Descriptives N = 58
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Results: Correlations

<table>
<thead>
<tr>
<th></th>
<th>AC (ERR)</th>
<th>AC (SC)</th>
<th>DIS (NAT)</th>
<th>DIS (MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (ERR)</td>
<td>0.368**</td>
<td>-0.556**</td>
<td>-0.535**</td>
<td></td>
</tr>
<tr>
<td>AC (SC)</td>
<td></td>
<td>0.044</td>
<td>-0.167</td>
<td></td>
</tr>
<tr>
<td>DIS (NAT)</td>
<td></td>
<td></td>
<td>0.771**</td>
<td></td>
</tr>
</tbody>
</table>

Results: AC – bid

- Male
 - M = 58.35, t(57) = 1.39, p > 0.001
 - Vowel Discrimination Task
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Attention Control

- Descriptives N = 58
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Results: Correlations

<table>
<thead>
<tr>
<th></th>
<th>AC (ERR)</th>
<th>AC (SC)</th>
<th>DIS (NAT)</th>
<th>DIS (MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (ERR)</td>
<td>0.368**</td>
<td>-0.556**</td>
<td>-0.535**</td>
<td></td>
</tr>
<tr>
<td>AC (SC)</td>
<td></td>
<td>0.044</td>
<td>-0.167</td>
<td></td>
</tr>
<tr>
<td>DIS (NAT)</td>
<td></td>
<td></td>
<td>0.771**</td>
<td></td>
</tr>
</tbody>
</table>

Results: AC – bid

- Male
 - M = 58.35, t(57) = 1.39, p > 0.001
 - Vowel Discrimination Task
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Attention Control

- Descriptives N = 58
 - Error Rate (% ER)
 - NAT: M = 82.79, MAN: M = 73.40 (t(57) = 7.57, p < 0.001)
 - Error Rate (% ER)
 - NAT = 96.35, MAN = 1000

Results: Correlations

<table>
<thead>
<tr>
<th></th>
<th>AC (ERR)</th>
<th>AC (SC)</th>
<th>DIS (NAT)</th>
<th>DIS (MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (ERR)</td>
<td>0.368**</td>
<td>-0.556**</td>
<td>-0.535**</td>
<td></td>
</tr>
<tr>
<td>AC (SC)</td>
<td></td>
<td>0.044</td>
<td>-0.167</td>
<td></td>
</tr>
<tr>
<td>DIS (NAT)</td>
<td></td>
<td></td>
<td>0.771**</td>
<td></td>
</tr>
</tbody>
</table>
Results: AC

Greater AC may provide learners with an advantage

• in perceptual cue-weighting in L2 speech
• in phonetic training involving backgrounding and foregrounding of L2-specific use of acoustic features

Methodological issues:

• participants focused mainly on accurate performance (feedback, time pressure)

Conclusions

ATTENTION CONTROL
• involved in the processing of L2 speech
• may facilitate target-like cue-weighting
• may explain inter-learner variation in L2 phonological attainment

FUTURE RESEARCH:
• Improve the task (time pressure)
• Proficiency measure
• Other cognitive abilities: E.g. ability for oral mimicry
• Focus on both: L2 speech ability and production

Acknowledgments:
Participants in this study
Eva Cervino-Povedano
Pavel Trofimovich
Victor Kravchenko
GRAL research assistants

Thank you!